Heap

  1. Max-Heap: The value of a node must be greater than or equal to the values of its children. The greatest value is at the root. The same property must be true for all subtrees.
    Plain text
    Copy to clipboard
    Open code in new window
    EnlighterJS 3 Syntax Highlighter
    35 33 42 10 14 19 27 44 26 31
    35 33 42 10 14 19 27 44 26 31
    35 33 42 10 14 19 27 44 26 31

     


    Max-Heap construction

    Max-Heap deletion

    Plain text
    Copy to clipboard
    Open code in new window
    EnlighterJS 3 Syntax Highlighter
    @NoArgsConstructor
    @AllArgsConstructor
    @Data
    @ToString
    public class MaxHeap {
    private List<Integer> data = new ArrayList<>();
    /**
    * Function to return the position of the parent for the node currently at position
    */
    private int parent(int position) {
    if (position == 0) {
    return 0;
    }
    return (position - 1) / 2;
    }
    /**
    * Function to return the position of the left child for the node currently at position
    */
    private int left(int position) {
    return (2 * position) + 1;
    }
    /**
    * Function to return the position of the right child for the node currently at position
    */
    private int right(int position) {
    return (2 * position) + 2;
    }
    private void swap(int firstPosition, int secondPosition) {
    System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition));
    int tmp = this.data.get(firstPosition);
    this.data.set(firstPosition, this.data.get(secondPosition));
    this.data.set(secondPosition, tmp);
    System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition));
    }
    public void add(int item) {
    this.data.add(item);
    // increase the size of an array Heap[++size] = element;
    int current = getSize() - 1;
    System.out.println("adding: " + item + " to position: " + current);
    heapifyUp(current);
    }
    public int peek() {
    return data.get(0);
    }
    /**
    * Step 1 − Remove root node.<br>
    * Step 2 − Move the last element of last level to root.<br>
    * Step 3 − Compare the value of this child node with its parent.<br>
    * Step 4 − If value of parent is less than child, then swap them.<br>
    * Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
    */
    public int poll() {
    int head = data.get(0);
    // replace the root of the heap with the last element
    data.set(0, this.data.get(getSize() - 1));
    data.remove(getSize() - 1);
    // call heapify-down on the root node
    heapifyDown(0);
    return head;
    }
    /**
    * Step 1 − Create a new node at the end of heap.<br>
    * Step 2 − Assign new value to the node.<br>
    * Step 3 − Compare the value of this child node with its parent.<br>
    * Step 4 − If value of parent is less than child, then swap them.<br>
    * Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
    */
    private void heapifyUp(int position) {
    int temp = this.data.get(position);
    if (position > 0 && temp > this.data.get(parent(position))) {
    System.out.println("heapifyUp - position: " + position + ", data: " + this.data.get(parent(position)));
    // swap the two if heap property is violated
    swap(position, parent(position));
    // call heapify-up on the parent
    heapifyUp(parent(position));
    }
    }
    /**
    * Step 1 − Remove root node.<br>
    * Step 2 − Move the last element of last level to root.<br>
    * Step 3 − Compare the value of this child node with its parent.<br>
    * Step 4 − If value of parent is less than child, then swap them.<br>
    * Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
    */
    private void heapifyDown(int position) {
    int largest = position;
    int leftChild = left(position);
    int rightChild = right(position);
    // compare `A[i]` with its left and right child
    // and find the largest value
    int size = getSize();
    if (leftChild < size && this.data.get(leftChild) > this.data.get(largest)) {
    largest = leftChild;
    }
    if (rightChild < size && this.data.get(rightChild) > this.data.get(largest)) {
    largest = rightChild;
    }
    if (largest != position) {
    // swap with a child having lesser value
    swap(position, largest);
    // call heapify-down on the child
    heapifyDown(largest);
    }
    }
    public void print() {
    System.out.println("\nList");
    for (Integer d : data) {
    System.out.println("data: " + d);
    }
    System.out.println("\nTree");
    System.out.println("Root: " + data.get(0));
    for (int i = 1; i <= getSize() / 2; i++) {
    try {
    System.out.print("Parent: " + this.data.get(i - 1));
    } catch (Exception e) {
    }
    try {
    System.out.print(", Left: " + this.data.get(this.left(i - 1)));
    } catch (Exception e) {
    }
    try {
    System.out.print(", Right: " + this.data.get((this.right(i - 1))));
    } catch (Exception e) {
    }
    System.out.println();
    }
    System.out.println("\n");
    }
    public int getSize() {
    return this.data.size();
    }
    }
    @NoArgsConstructor @AllArgsConstructor @Data @ToString public class MaxHeap { private List<Integer> data = new ArrayList<>(); /** * Function to return the position of the parent for the node currently at position */ private int parent(int position) { if (position == 0) { return 0; } return (position - 1) / 2; } /** * Function to return the position of the left child for the node currently at position */ private int left(int position) { return (2 * position) + 1; } /** * Function to return the position of the right child for the node currently at position */ private int right(int position) { return (2 * position) + 2; } private void swap(int firstPosition, int secondPosition) { System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition)); int tmp = this.data.get(firstPosition); this.data.set(firstPosition, this.data.get(secondPosition)); this.data.set(secondPosition, tmp); System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition)); } public void add(int item) { this.data.add(item); // increase the size of an array Heap[++size] = element; int current = getSize() - 1; System.out.println("adding: " + item + " to position: " + current); heapifyUp(current); } public int peek() { return data.get(0); } /** * Step 1 − Remove root node.<br> * Step 2 − Move the last element of last level to root.<br> * Step 3 − Compare the value of this child node with its parent.<br> * Step 4 − If value of parent is less than child, then swap them.<br> * Step 5 − Repeat step 3 & 4 until Heap property holds.<br> */ public int poll() { int head = data.get(0); // replace the root of the heap with the last element data.set(0, this.data.get(getSize() - 1)); data.remove(getSize() - 1); // call heapify-down on the root node heapifyDown(0); return head; } /** * Step 1 − Create a new node at the end of heap.<br> * Step 2 − Assign new value to the node.<br> * Step 3 − Compare the value of this child node with its parent.<br> * Step 4 − If value of parent is less than child, then swap them.<br> * Step 5 − Repeat step 3 & 4 until Heap property holds.<br> */ private void heapifyUp(int position) { int temp = this.data.get(position); if (position > 0 && temp > this.data.get(parent(position))) { System.out.println("heapifyUp - position: " + position + ", data: " + this.data.get(parent(position))); // swap the two if heap property is violated swap(position, parent(position)); // call heapify-up on the parent heapifyUp(parent(position)); } } /** * Step 1 − Remove root node.<br> * Step 2 − Move the last element of last level to root.<br> * Step 3 − Compare the value of this child node with its parent.<br> * Step 4 − If value of parent is less than child, then swap them.<br> * Step 5 − Repeat step 3 & 4 until Heap property holds.<br> */ private void heapifyDown(int position) { int largest = position; int leftChild = left(position); int rightChild = right(position); // compare `A[i]` with its left and right child // and find the largest value int size = getSize(); if (leftChild < size && this.data.get(leftChild) > this.data.get(largest)) { largest = leftChild; } if (rightChild < size && this.data.get(rightChild) > this.data.get(largest)) { largest = rightChild; } if (largest != position) { // swap with a child having lesser value swap(position, largest); // call heapify-down on the child heapifyDown(largest); } } public void print() { System.out.println("\nList"); for (Integer d : data) { System.out.println("data: " + d); } System.out.println("\nTree"); System.out.println("Root: " + data.get(0)); for (int i = 1; i <= getSize() / 2; i++) { try { System.out.print("Parent: " + this.data.get(i - 1)); } catch (Exception e) { } try { System.out.print(", Left: " + this.data.get(this.left(i - 1))); } catch (Exception e) { } try { System.out.print(", Right: " + this.data.get((this.right(i - 1)))); } catch (Exception e) { } System.out.println(); } System.out.println("\n"); } public int getSize() { return this.data.size(); } }
    @NoArgsConstructor
    @AllArgsConstructor
    @Data
    @ToString
    public class MaxHeap {
    
        private List<Integer> data = new ArrayList<>();
    
        /**
         * Function to return the position of the parent for the node currently at position
         */
        private int parent(int position) {
            if (position == 0) {
                return 0;
            }
            return (position - 1) / 2;
        }
    
        /**
         * Function to return the position of the left child for the node currently at position
         */
        private int left(int position) {
            return (2 * position) + 1;
        }
    
        /**
         * Function to return the position of the right child for the node currently at position
         */
        private int right(int position) {
            return (2 * position) + 2;
        }
    
        private void swap(int firstPosition, int secondPosition) {
            System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition));
            int tmp = this.data.get(firstPosition);
            this.data.set(firstPosition, this.data.get(secondPosition));
            this.data.set(secondPosition, tmp);
            System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition));
    
        }
    
        public void add(int item) {
            this.data.add(item);
    
            // increase the size of an array Heap[++size] = element;
            int current = getSize() - 1;
    
            System.out.println("adding: " + item + " to position: " + current);
    
            heapifyUp(current);
        }
    
        public int peek() {
            return data.get(0);
        }
    
        /**
         * Step 1 − Remove root node.<br>
         * Step 2 − Move the last element of last level to root.<br>
         * Step 3 − Compare the value of this child node with its parent.<br>
         * Step 4 − If value of parent is less than child, then swap them.<br>
         * Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
         */
        public int poll() {
            int head = data.get(0);
    
            // replace the root of the heap with the last element
            data.set(0, this.data.get(getSize() - 1));
            data.remove(getSize() - 1);
            // call heapify-down on the root node
            heapifyDown(0);
    
            return head;
        }
    
        /**
         * Step 1 − Create a new node at the end of heap.<br>
         * Step 2 − Assign new value to the node.<br>
         * Step 3 − Compare the value of this child node with its parent.<br>
         * Step 4 − If value of parent is less than child, then swap them.<br>
         * Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
         */
        private void heapifyUp(int position) {
            int temp = this.data.get(position);
    
            if (position > 0 && temp > this.data.get(parent(position))) {
                System.out.println("heapifyUp - position: " + position + ", data: " + this.data.get(parent(position)));
                // swap the two if heap property is violated
                swap(position, parent(position));
    
                // call heapify-up on the parent
                heapifyUp(parent(position));
            }
        }
    
        /**
         * Step 1 − Remove root node.<br>
         * Step 2 − Move the last element of last level to root.<br>
         * Step 3 − Compare the value of this child node with its parent.<br>
         * Step 4 − If value of parent is less than child, then swap them.<br>
         * Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
         */
        private void heapifyDown(int position) {
    
            int largest = position;
            int leftChild = left(position);
            int rightChild = right(position);
    
            // compare `A[i]` with its left and right child
            // and find the largest value
            int size = getSize();
    
            if (leftChild < size && this.data.get(leftChild) > this.data.get(largest)) {
                largest = leftChild;
            }
    
            if (rightChild < size && this.data.get(rightChild) > this.data.get(largest)) {
                largest = rightChild;
            }
    
            if (largest != position) {
    
                // swap with a child having lesser value
                swap(position, largest);
    
                // call heapify-down on the child
                heapifyDown(largest);
            }
        }
    
        public void print() {
            System.out.println("\nList");
            for (Integer d : data) {
                System.out.println("data: " + d);
            }
            System.out.println("\nTree");
            System.out.println("Root: " + data.get(0));
            for (int i = 1; i <= getSize() / 2; i++) {
    
                try {
                    System.out.print("Parent: " + this.data.get(i - 1));
                } catch (Exception e) {
    
                }
    
                try {
                    System.out.print(", Left: " + this.data.get(this.left(i - 1)));
                } catch (Exception e) {
    
                }
    
                try {
                    System.out.print(", Right: " + this.data.get((this.right(i - 1))));
                } catch (Exception e) {
    
                }
                System.out.println();
            }
            System.out.println("\n");
        }
    
        public int getSize() {
            return this.data.size();
        }
    
    }
    

     

  2. Min-Heap: The value of a node is greater than or equal to the value of its parent. The smallest value is at the root. The same property must be true for all subtrees.
    Plain text
    Copy to clipboard
    Open code in new window
    EnlighterJS 3 Syntax Highlighter
    35 33 42 10 14 19 27 44 26 31
    35 33 42 10 14 19 27 44 26 31
    35 33 42 10 14 19 27 44 26 31

     

Plain text
Copy to clipboard
Open code in new window
EnlighterJS 3 Syntax Highlighter
@NoArgsConstructor
@AllArgsConstructor
@Data
@ToString
public class MinHeap {
private List<Integer> data = new ArrayList<>();
/**
* Function to return the position of the parent for the node currently at position
*/
private int parent(int position) {
if (position == 0) {
return 0;
}
return (position - 1) / 2;
}
/**
* Function to return the position of the left child for the node currently at position
*/
private int left(int position) {
return (2 * position) + 1;
}
/**
* Function to return the position of the right child for the node currently at position
*/
private int right(int position) {
return (2 * position) + 2;
}
private void swap(int firstPosition, int secondPosition) {
System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition));
int tmp = this.data.get(firstPosition);
this.data.set(firstPosition, this.data.get(secondPosition));
this.data.set(secondPosition, tmp);
System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition));
}
public void add(int item) {
this.data.add(item);
// increase the size of an array Heap[++size] = element;
int current = getSize() - 1;
System.out.println("adding: " + item + " to position: " + current);
heapifyUp(current);
}
public int peek() {
return data.get(0);
}
public int poll() {
int head = data.get(0);
// replace the root of the heap with the last element
data.set(0, this.data.get(getSize() - 1));
data.remove(getSize() - 1);
// call heapify-down on the root node
heapifyDown(0);
return head;
}
/**
* Step 1 − Create a new node at the end of heap.<br>
* Step 2 − Assign new value to the node.<br>
* Step 3 − Compare the value of this child node with its parent.<br>
* Step 4 − If value of parent is greater than child, then swap them.<br>
* Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
*/
private void heapifyUp(int position) {
int temp = this.data.get(position);
if (position > 0 && temp < this.data.get(parent(position))) {
System.out.println("heapifyUp - position: " + position + ", data: " + this.data.get(parent(position)));
// swap the two if heap property is violated
swap(position, parent(position));
// call heapify-up on the parent
heapifyUp(parent(position));
}
}
/**
* Step 1 − Remove root node.<br>
* Step 2 − Move the last element of last level to root.<br>
* Step 3 − Compare the value of this child node with its parent.<br>
* Step 4 − If value of parent is greater than child, then swap them.<br>
* Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
*/
private void heapifyDown(int position) {
int smallest = position;
int leftChild = left(position);
int rightChild = right(position);
// compare `A[i]` with its left and right child
// and find the smallest value
int size = getSize();
if (leftChild < size && this.data.get(leftChild) < this.data.get(smallest)) {
smallest = leftChild;
}
if (rightChild < size && this.data.get(rightChild) < this.data.get(smallest)) {
smallest = rightChild;
}
if (smallest != position) {
// swap with a child having lesser value
swap(position, smallest);
// call heapify-down on the child
heapifyDown(smallest);
}
}
public void print() {
System.out.println("\nList");
for (Integer d : data) {
System.out.println("data: " + d);
}
System.out.println("\nTree");
System.out.println("Root: " + data.get(0));
for (int i = 1; i <= getSize() / 2; i++) {
try {
System.out.print("Parent: " + this.data.get(i - 1));
} catch (Exception e) {
}
try {
System.out.print(", Left: " + this.data.get(this.left(i - 1)));
} catch (Exception e) {
}
try {
System.out.print(", Right: " + this.data.get((this.right(i - 1))));
} catch (Exception e) {
}
System.out.println();
}
System.out.println("\n");
}
public int getSize() {
return this.data.size();
}
}
@NoArgsConstructor @AllArgsConstructor @Data @ToString public class MinHeap { private List<Integer> data = new ArrayList<>(); /** * Function to return the position of the parent for the node currently at position */ private int parent(int position) { if (position == 0) { return 0; } return (position - 1) / 2; } /** * Function to return the position of the left child for the node currently at position */ private int left(int position) { return (2 * position) + 1; } /** * Function to return the position of the right child for the node currently at position */ private int right(int position) { return (2 * position) + 2; } private void swap(int firstPosition, int secondPosition) { System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition)); int tmp = this.data.get(firstPosition); this.data.set(firstPosition, this.data.get(secondPosition)); this.data.set(secondPosition, tmp); System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition)); } public void add(int item) { this.data.add(item); // increase the size of an array Heap[++size] = element; int current = getSize() - 1; System.out.println("adding: " + item + " to position: " + current); heapifyUp(current); } public int peek() { return data.get(0); } public int poll() { int head = data.get(0); // replace the root of the heap with the last element data.set(0, this.data.get(getSize() - 1)); data.remove(getSize() - 1); // call heapify-down on the root node heapifyDown(0); return head; } /** * Step 1 − Create a new node at the end of heap.<br> * Step 2 − Assign new value to the node.<br> * Step 3 − Compare the value of this child node with its parent.<br> * Step 4 − If value of parent is greater than child, then swap them.<br> * Step 5 − Repeat step 3 & 4 until Heap property holds.<br> */ private void heapifyUp(int position) { int temp = this.data.get(position); if (position > 0 && temp < this.data.get(parent(position))) { System.out.println("heapifyUp - position: " + position + ", data: " + this.data.get(parent(position))); // swap the two if heap property is violated swap(position, parent(position)); // call heapify-up on the parent heapifyUp(parent(position)); } } /** * Step 1 − Remove root node.<br> * Step 2 − Move the last element of last level to root.<br> * Step 3 − Compare the value of this child node with its parent.<br> * Step 4 − If value of parent is greater than child, then swap them.<br> * Step 5 − Repeat step 3 & 4 until Heap property holds.<br> */ private void heapifyDown(int position) { int smallest = position; int leftChild = left(position); int rightChild = right(position); // compare `A[i]` with its left and right child // and find the smallest value int size = getSize(); if (leftChild < size && this.data.get(leftChild) < this.data.get(smallest)) { smallest = leftChild; } if (rightChild < size && this.data.get(rightChild) < this.data.get(smallest)) { smallest = rightChild; } if (smallest != position) { // swap with a child having lesser value swap(position, smallest); // call heapify-down on the child heapifyDown(smallest); } } public void print() { System.out.println("\nList"); for (Integer d : data) { System.out.println("data: " + d); } System.out.println("\nTree"); System.out.println("Root: " + data.get(0)); for (int i = 1; i <= getSize() / 2; i++) { try { System.out.print("Parent: " + this.data.get(i - 1)); } catch (Exception e) { } try { System.out.print(", Left: " + this.data.get(this.left(i - 1))); } catch (Exception e) { } try { System.out.print(", Right: " + this.data.get((this.right(i - 1)))); } catch (Exception e) { } System.out.println(); } System.out.println("\n"); } public int getSize() { return this.data.size(); } }
@NoArgsConstructor
@AllArgsConstructor
@Data
@ToString
public class MinHeap {

    private List<Integer> data = new ArrayList<>();

    /**
     * Function to return the position of the parent for the node currently at position
     */
    private int parent(int position) {
        if (position == 0) {
            return 0;
        }
        return (position - 1) / 2;
    }

    /**
     * Function to return the position of the left child for the node currently at position
     */
    private int left(int position) {
        return (2 * position) + 1;
    }

    /**
     * Function to return the position of the right child for the node currently at position
     */
    private int right(int position) {
        return (2 * position) + 2;
    }

    private void swap(int firstPosition, int secondPosition) {
        System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition));
        int tmp = this.data.get(firstPosition);
        this.data.set(firstPosition, this.data.get(secondPosition));
        this.data.set(secondPosition, tmp);
        System.out.println("firstPosition: " + firstPosition + ", data: " + this.data.get(firstPosition) + ", secondPosition: " + secondPosition + ", data: " + this.data.get(secondPosition));

    }

    public void add(int item) {
        this.data.add(item);

        // increase the size of an array Heap[++size] = element;
        int current = getSize() - 1;

        System.out.println("adding: " + item + " to position: " + current);

        heapifyUp(current);
    }

    public int peek() {
        return data.get(0);
    }

    public int poll() {
        int head = data.get(0);

        // replace the root of the heap with the last element
        data.set(0, this.data.get(getSize() - 1));
        data.remove(getSize() - 1);
        // call heapify-down on the root node
        heapifyDown(0);

        return head;
    }

    /**
     * Step 1 − Create a new node at the end of heap.<br>
     * Step 2 − Assign new value to the node.<br>
     * Step 3 − Compare the value of this child node with its parent.<br>
     * Step 4 − If value of parent is greater than child, then swap them.<br>
     * Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
     */
    private void heapifyUp(int position) {
        int temp = this.data.get(position);

        if (position > 0 && temp < this.data.get(parent(position))) {
            System.out.println("heapifyUp - position: " + position + ", data: " + this.data.get(parent(position)));
            // swap the two if heap property is violated
            swap(position, parent(position));

            // call heapify-up on the parent
            heapifyUp(parent(position));
        }
    }


    /**
     * Step 1 − Remove root node.<br>
     * Step 2 − Move the last element of last level to root.<br>
     * Step 3 − Compare the value of this child node with its parent.<br>
     * Step 4 − If value of parent is greater than child, then swap them.<br>
     * Step 5 − Repeat step 3 & 4 until Heap property holds.<br>
     */
    private void heapifyDown(int position) {

        int smallest = position;
        int leftChild = left(position);
        int rightChild = right(position);

        // compare `A[i]` with its left and right child
        // and find the smallest value
        int size = getSize();

        if (leftChild < size && this.data.get(leftChild) < this.data.get(smallest)) {
            smallest = leftChild;
        }

        if (rightChild < size && this.data.get(rightChild) < this.data.get(smallest)) {
            smallest = rightChild;
        }

        if (smallest != position) {

            // swap with a child having lesser value
            swap(position, smallest);

            // call heapify-down on the child
            heapifyDown(smallest);
        }
    }

    public void print() {
        System.out.println("\nList");
        for (Integer d : data) {
            System.out.println("data: " + d);
        }
        System.out.println("\nTree");
        System.out.println("Root: " + data.get(0));
        for (int i = 1; i <= getSize() / 2; i++) {

            try {
                System.out.print("Parent: " + this.data.get(i - 1));
            } catch (Exception e) {

            }

            try {
                System.out.print(", Left: " + this.data.get(this.left(i - 1)));
            } catch (Exception e) {

            }

            try {
                System.out.print(", Right: " + this.data.get((this.right(i - 1))));
            } catch (Exception e) {

            }
            System.out.println();
        }
        System.out.println("\n");
    }

    public int getSize() {
        return this.data.size();
    }

}

 

Heap Data Structure Applications

  • Heap is used while implementing a priority queue.
  • Dijkstra’s Algorithm
  • Heap Sort



Subscribe To Our Newsletter
You will receive our latest post and tutorial.
Thank you for subscribing!

required
required


Leave a Reply

Your email address will not be published. Required fields are marked *